This presentation contains forward-looking statements, including, but not limited to, statements regarding the ability and strategies of Advaxis, Inc. (the “Company”) to develop and commercialize cancer immunotherapies, timing of planned clinical trials and regulatory milestones, potential partnership opportunities and the safety and efficacy of the Company’s proprietary immunotherapies. These forward-looking statements are subject to a number of risks including the risk factors set forth from time to time in the Company’s SEC filings including, but not limited to, its report on Form 10-K for the fiscal year ended October 31, 2018 as well as its Forms 10-Q and 8-K, which are available at http://www.sec.gov.

Any forward-looking statements set forth in this presentation speak only as of the date of this presentation. The Company does not intend to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof other than as required by law. Our fiscal year ends October 31. Throughout this presentation, all references to quarters and years are to the calendar quarters and years unless otherwise noted.
Advaxis Overview
Creating a Broad Portfolio of Cancer Immunotherapies, Using a Unique and Validated Platform

Unique Platform Yielding Broad Portfolio of I-O Drug Candidates: Listeria monocytogenes (Lm) platform optimized so as to generate a broad portfolio of I-O drug candidates across a large number of solid tumor types

Validation in the Clinic: Demonstrated manageable safety profile along with clinical activity – nearly 500 patients treated to date

Neoantigen-Directed Drug Candidates with High Tumor Immunogenicity Potential: Innovative, personalized and off-the-shelf neoantigen-directed drug candidate with preliminary clinical data demonstrating potential for best-in-class CD8+ T cell response

Strong Intellectual Property Portfolio: Over 400 patents/patent applications

Experienced Management Team: Chief Executive Officer, Chief Financial Officer and Chief Medical Officer joined within past year

Multiple Catalysts (Read-outs) Anticipated in 2019
Clinical Pipeline Overview

<table>
<thead>
<tr>
<th>CANCER INDICATION</th>
<th>IND</th>
<th>PHASE 1</th>
<th>PHASE 2</th>
<th>PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADXS-HPV (AXAL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIM2CERV, High-Risk, Locally Advanced Cervical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPV+ Head and Neck (Partners to be announced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADXS-PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic Prostate in Combination with KEYTRUDA® (pembrolizumab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADXS-NEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Cancers by Targeting Personal Neoantigens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(NSCLC, CRC, Head & Neck, Melanoma, Bladder)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADXS-HOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Small Cell Lung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 FDA has placed a partial clinical hold on this study due to CMC requests which allows continued dosing of already enrolled patients but which prevents enrollment of new patients until resolution of this partial hold.
Our Differentiator:

Lm Technology™ Platform
Anti-Tumor Immunity: Building Blocks for Clinical Success

- **Induction of peripheral immune responses**
 - CD8+, CD4+, increased Myeloid proliferation, Decreased Tregs & MDSCs
 - HPV, PSA, HER2, ADXS-NEO, ADXS-HOT (In vitro)

- **Priming of T cell response**
 - Neoantigen Specific T cells after 1 week
 - 90% of neoantigens generate CD8+ T cells in Lm vectors (In vitro, clinical data pending)
 - Non-immunogenic neoantigens are immunogenic when presented by Lm vector

- **Convert “cold” tumors into “hot” tumors**
 - Preclinical Models: Upregulates PD-L1
 - Reduces Tregs, MDSCs, M2 TAMs (M2-M1 shift)

- **Vaccine-induced T cells infiltrate to the tumor**
 - Chemokines traffic T cells into TME
 - Clinical Evidence: HPV+, Head and Neck, ADXS-NEO (pending)
 - In Vitro: All Constructs Including ADXS-NEO and ADXS-HOT (prototype)

- **Promote antigen spreading**
 - Demonstrated with 5 different constructs in clinical trials
 - Multiple targets not included in the vaccine
 - Magnitude of T cell response vs. target is associated with increased antigen spreading and clinical outcomes

Lm-based drug candidates have demonstrated broad anti-tumor immunity through achieving these
How Our *Lm* Platform is Designed

Lm vectors: Mimic natural infection and redirect immune response against cancer through:

1. **INNATE IMMUNITY:** *Enhanced antigen presentation activates multiple pathways* and alerts and trains the immune system

2. **ADAPTIVE IMMUNITY:** Mobilizes and generates a *cancer-specific T cell* response to attack the tumor

3. **CHANGES TO TUMOR MICROENVIRONMENT (TME):** *Reduces tumor-protective cells (Tregs and MDSCs in the TME)* that shield the tumor from the immune system

The *Lm* platform has been *clinically evaluated* in nearly 500 patients across multiple clinical trials and *antigen spreading* demonstrated in clinical studies of ADXS-HPV, ADXS-PSA and ADXS-NEO.
ADXS-HPV
(Axalimogene Filolisbac or AXAL)

AIM2CERV – Phase 3 clinical trial in high-risk, locally advanced cervical cancer
5-year survival rates are poor for high-risk locally advanced patients; represents area of great unmet need

- An estimated 91% of all cervical cancers are caused by an HPV infection
- While the overall incidence rate is expected to remain relatively stable, the number of incident cases is expected to increase slightly due to an increase in the total U.S. female population
- HRLA patients range from stage IB with clinical lesions in the cervix to stage IVA with cancer that has spread to adjacent organs
 - ~53% of overall cervical cancer incidence is HRLA while ~8% of incidence is metastatic

Note: *Stage 0 is carcinoma in situ (CIN III) and is considered pre-invasive cancer
Source: American Cancer Society; National Cancer Institute
Annual, Worldwide Peak Revenue Opportunity of $500M for AXAL in High-Risk Locally Advanced Cervical Cancer

Market Opportunity in the U.S and Europe - Estimated Annual Revenues

Combined Worldwide Estimated Market Opportunity of ~$500M

* Source: December 2016, LEK AXAL Assessment Report
AXAL Phase 2 Study in India: Prolonged Survival and Tumor Response in Randomized, Multicenter Phase 2 Study in Recurrent/Refractory CC Illustrated the Promise of Lm Technology

- 34.9% 12-month survival rate (38/109), 24.8% (27/109) 18-month survival rate, 3 confirmed CRs observed (RECIST 1.1)
- Accepted for publication in the May edition of peer-reviewed *International Journal of Gynecological Cancer*

AXAL Phase 2 GOG-0265 Study: Improvement of survival rates in Recurrent / Metastatic Cervical Cancer Confirmed the Findings

- 38.0% 12-month survival rate (19/50); highest achieved to-date in GOG PRmCC studies to date, 1 durable CR observed
- GOG Model-Predicted 12 month survival was 24.5%, based on the characteristics of patients in 0265
- Primary efficacy endpoint met

12-month and median overall survival

- Number of patients: 50
- Events: 42 (84%)
- Censored: 8 (16%)
- Median OS: 6.2 months
- 90% CI: (4.4 - 12.3)

- Represents a 52% improvement vs logistic model-predicted milestone survival rate of 24.5%
- The probability of this survival advantage being detected by chance vs a true treatment effect was 0.02
- 8 patients remain alive as of January 31, 2017

PRmCC (Persistent Recurrent Metastatic Cervical Cancer), GOG (Gynecological Oncology Group); CR= complete response

1. Data Presented at ASCO 2014
2. Data presented at SGO 2017
Promising efficacy results in challenging population:
8 of 9 patients recurrence free at median follow-up of 42 months

Relapse Free Survival Data

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Days to Relapse</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4N3</td>
<td>11</td>
</tr>
<tr>
<td>T3N0</td>
<td>10</td>
</tr>
<tr>
<td>T3N0</td>
<td>9</td>
</tr>
<tr>
<td>T3N3</td>
<td>8</td>
</tr>
<tr>
<td>T2N0</td>
<td>7</td>
</tr>
<tr>
<td>T4N0</td>
<td>6</td>
</tr>
<tr>
<td>T3N3</td>
<td>5</td>
</tr>
<tr>
<td>T4N0</td>
<td>4</td>
</tr>
<tr>
<td>T2N2</td>
<td>3</td>
</tr>
<tr>
<td>T3N3</td>
<td>2</td>
</tr>
</tbody>
</table>

- Patient progressed systemically
- Patient expired unrelated to study treatment

TRAE

<table>
<thead>
<tr>
<th>TRAE</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 2</td>
</tr>
<tr>
<td>Chills/Rigors</td>
<td>4 (40)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>3 (30)</td>
</tr>
<tr>
<td>Headache</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Flu-like symptoms</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Pain (back/neck)</td>
<td>0</td>
</tr>
<tr>
<td>Hypotension</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
</tr>
</tbody>
</table>

Commentary

- 11 total patients enrolled; 10 treated
- All patients who completed RT and received treatment achieved a CR at six months (N = 9)
- 8/9 patients (89%) were recurrence free at a median follow up of 42 months
- Safety profile consistent with previous clinical experience
- No Grade 4 adverse events
- Encouraging data to support AXAL in adjuvant setting

Note: Patient #1 enrolled but was never treated on study
Safran et al., Poster Presentation at ASCO 2016
Manuscript accepted for publication in the International J of Radiation Oncology *BrUOG, Brown University Oncology Group. CR, Complete response; TRAE, Treatment related adverse events
ADXS31-164 (ADXS-HER2) Phase I - Survival Data from Canine Osteosarcoma Study

This Phase 1 trial compared SOC amputation and chemotherapy (in case matched controls) to SOC followed by 3 doses of ADXS31-164 (ADXS-HER2)

These data show a highly significant improvement in progression free survival and overall survival with treatment that led to USDA expedited approval

Without treatment 100% will recur and expire within 1-2 years; with treatment using ADXS-HER2, after SOC, the likelihood of recurrence is significantly reduced, delayed, or eliminated

This study exemplifies the ability of ADXS Lm vectors to control the sub-clinical micro-metastases that would ultimately have progressed into a “recurrence”

Monetization of ADXS-HER2: Licensing deals signed with a) Aratana in 2014 for canines and b) OS Therapies in 2018 for pediatric osteosarcoma

These data were sufficient for USDA to grant expedited approval for treat canine osteosarcoma in December 2017

Final Study Publication: Clin Cancer Res. 2016 Sep 1;22(17):4380-90.
Axalimogene Filolisbac in High-Risk, Locally Advanced Cervical Cancer
AIM2CERV Phase 3 Study as Adjuvant Monotherapy to Prevent Recurrence in High-Risk Cervical Cancer

Trial Design

Eligibility
- HRLACC
- FIGO stage I–II with positive pelvic nodes
- FIGO stage III–IVA
- Any FIGO stage with para-aortic nodes

Treatment with Cisplatin
Treatment with cisplatin (at least 4-weeks exposure) and radiation (minimum 40-Gy external beam radiation therapy)
- n=300
- 1 X 10^9 CFU
- Up to 1 year

Treatment with Axalimogene Filolisbac
- n=150
- Up to 1 year

Placebo IV

Primary Endpoint:
- Disease-free survival

Secondary Outcome Measures:
- Safety & Tolerability
- Overall survival

“Just as we need options to prevent HPV-related cancers, there is a significant need for more therapeutic options to treat those with cancer. No woman should die from cervical cancer.”

Deborah Arrindell
Vice President, Health Policy

AIM2CERV – Axalimogene Filolisbac Immunotherapy Following Chemo/Radiation in Patients who have High Risk Locally Advanced Cervical Cancer (HRLACC)

Currently seeking to modify trial design to include earlier Interim Analyses

1 FDA has placed a partial clinical hold on this study due to CMC requests which allows continued dosing of already enrolled patients but which prevents enrollment of new patients until resolution of this partial hold.
Combination Therapy of ADXS-PSA with Pembrolizumab in Late Stage Prostate Cancer
In all treated patients, an improvement in survival was observed in patients with ≥50% PSA declines from baseline vs. those <50% PSA declines.

Efficacy: Overall Survival – PSA Decline ≥ 50% vs. PSA < 50% Decline

Part B - in Combination with Pembrolizumab

Table:

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Events</th>
<th>Median</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part A: PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop <50%</td>
<td>12</td>
<td>9</td>
<td>7.79</td>
<td>3.52 – 11.9</td>
</tr>
<tr>
<td>Part B: PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drop ≥50%</td>
<td>6</td>
<td>0</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>Drop <50%</td>
<td>30</td>
<td>7</td>
<td>NR</td>
<td>6.37 – -</td>
</tr>
</tbody>
</table>

Part A: ADXS-PSA monotherapy; Part B: ADXS-PSA + pembrolizumab combination therapy
NR = Not Reached
Data cut off date: March 30, 2018
Combination Therapy of ADXS-PSA with Pembrolizumab in Metastatic Castration-Resistant Prostate Cancer Phase 1 / 2 Interim Study Results

• Combination of ADXS-PSA and pembrolizumab appeared safe and tolerable in highly refractory patient population
 • Mostly grade 1-2 treatment related adverse events
 • There was no additive toxicity observed with the combination therapy

Safety Profile

• In the treated population, patients who received combination therapy with ADXS-PSA and pembrolizumab experienced the longest overall survival

In Combination

• The percentage of patients with PSA declines from baseline in the combination therapy arm was 40.5%, and 15.4% in the monotherapy arm
 • 6 patients in the combination arm with 50% or greater PSA declines from baseline, and none in the monotherapy arm

Efficacy
Neoantigen-Directed Programs:

ADXS-NEO - Patient Specific

ADXS-HOT – Off-the-Shelf
Why Neoantigens?

- Mutations cause cancer and also create neoantigens.
- Neoantigens are only found in cancer cells which makes them good therapeutic targets.
- T cells that target neoantigens are the common link among successful immunotherapies developed to date (e.g., checkpoint inhibitors, Tumor Infiltrating Lymphocytes or TILs).
- Our Lm platform is effective at generating broad and rapid T cell response against neoantigens.
- Preclinical data demonstrate that over 90% of neoantigens in an ADXS-NEO vector generated T cell responses that controlled tumor growth\(^1\) and preliminary clinical data demonstrate broad and rapid T cell response against personal neoantigens\(^2\).

\(^1\)Presented at AACR 2018 by Coder et al.
\(^2\)Presented at IO-360 2019 by Gutierrez and Petit
Patient-specific, neoantigen-directed therapies
ADXS-NEO: The Personalized Approach

• Activates a patient's immune system, creating a targeted T cell response to personal neoantigens based on unique, patient-specific mutations

• The Lm platform’s impact on the immune system (i.e., innate immunity, adaptive immunity and changes to TME) provides potential for strong anti-cancer effects

• Platform capacity allows for targeting a large number of personal neoantigens (currently using 40)

• Potential application in any solid tumor type

Massive Parallel Sequencing of Tumor Biopsies

Identify neoepitopes

Patient-Specific Immunotherapies

Advaxis designs vector based on neoepitopes and bioengineers Lm

Patient’s Hospital or Treating Institution

Treat patient with personalized immunotherapy vector programmed to patient-specific neoepitopes
ADXS-NEO: Personalized Neoantigen Vaccine
Phase 1 Clinical Study Design

ADXS-NEO

Personalized, patient-specific drug candidates based on sequencing of each subject’s tumor

Endpoints:

Primary
- Tolerability/ Safety

Secondary
- Clinical activity
- RP2D

Exploratory
- Immunological

Metastatic Tumor Type

<table>
<thead>
<tr>
<th>SCCHN</th>
<th>NSCLC</th>
<th>MSS CRC</th>
</tr>
</thead>
</table>

Safety Phase

<table>
<thead>
<tr>
<th>SCCHN</th>
<th>NSCLC</th>
<th>Bladder</th>
<th>Melanoma</th>
</tr>
</thead>
</table>

Efficacy Phase

TBD

Part A

- ADXS-NEO Monotherapy
- Dose Escalation / Dose De-Escalation
- 3+3 Design

Part B

- ADXS-NEO + anti-PD-1 antibody
- Dose Escalation
- 3+3 Design

Part C

- ADXS-NEO + anti-PD-1 antibody

1x10^9 CFU of ADXS-NEO (DL1A)

- **5x10^8 of ADXS-NEO (DL2B)**
- **+ anti-PD-1 antibody**

- **1x10^8 CFU of ADXS-NEO (DL1B)**
- **+ anti-PD-1 antibody**

Clinical Data From Initial Cohort (safety, immune response)

Anticipated 1H 2019

CFU, Colony-Forming Unit; SCCHN, squamous cell carcinoma head and neck; NSCLC, non-small cell lung cancer; MSS CRC, microsatellite stable colon cancer; RP2D, recommended phase 2 dose
ADXS-HOT

Cancer-type specific, neoantigen-directed drug candidates
Hotspot mutations have demonstrated pre-clinical activity in Advaxis’ Lm Technology\(^1\)

ADXS-HOT constructs target both public, or shared, hotspot neoantigens and multiple proprietary tumor associated antigen targets, including oncofetal antigens (OFA’s) and cancer testis antigens (CTA’s)

Over 10 drug candidates designed using this approach

Coverage of nearly 100% ADXS-HOT constructs can include over 30 antigen targets and are designed to allow for multiple shots on goal to control the tumor in nearly all patients

Antigen spreading could further increase the potential number of targets

Can be used as monotherapy and/or in combination with other cancer treatments like checkpoint inhibitors

Off-the-shelf and available for patients to start treatment immediately

Manufactured in bulk with good stability keeping cost of goods low vs. “individualized” products

ADXS-HOT: Priority Tumor Types

- ADXS-503 for Non-small Cell Lung Cancer
 - First patient enrolled in February 2019

- ADXS-504 for Prostate Cancer – IND anticipated in 2019

- ADXS-506 for Bladder Cancer – IND anticipated in 2019
ADXS-HOT (503): NSCLC-Specific Vaccine
Phase 1/2 Clinical Study Design: First patient enrolled February 2019

ADXS-HOT

Cancer type-specific drug candidates based on commonly expressed public hotspot mutations and proprietary cancer antigens

Endpoints:

Primary
Tolerability/ Safety

Secondary
Clinical activity RP2D

Exploratory
Immunological

Part A
ADXS-503 Monotherapy Dose Escalation 3+3 Design

5x10^8 CFU of ADXS-503 (DL2)

Part B
ADXS-503 + anti-PD-1 antibody Dose Escalation 3+3 Design

5x10^8 CFU of ADXS-503 (DL2) + anti-PD-1 antibody

Part C
ADXS-503 + anti-PD-1 antibody

1x10^8 CFU of ADXS-503 + anti-PD-1 antibody

Safety Phase

- Refractory setting
- Up to 3 lines of prior therapy permitted
- Enrollment irrespective of EGFR/ ALK mutation status or PD-L1 expression

Efficacy Phase

- Subjects receiving treatment with pembrolizumab monotherapy who have PD assessed on initial scan
- ADXS-503 administered as add-on therapy while awaiting confirmatory scan (4-8 weeks after initial PD)

Clinical Data From Initial Cohort (safety, immune response) Anticipated 1H 2019
Advaxis’ Lm platform + Antigen Targets: Directed against tumor-specific targets and engaging the patient’s immune system to destroy tumor cells

Select Companies in the Space:

OTHER NEOANTIGEN APPROACHES

• Limited clinical evidence and immune response
• No demonstrated effect on TME
• Typically have poor priming, may require addition of adjuvants/co-stims
• Practical limitations in number of peptides administered

Advaxis’ Lm Platform + Antigen Targets

• Proven activity in pre-clinical models
• Demonstrated effect on the TME (MDSCs, Tregs)
• Immunogenic proprietary targets
• Priming via innate immune stimulation; adjuvant/co-stims not required
• Ability to “convert” non-immunogenic peptides into immunogenic peptides and “turn cold tumors hot”

1 Not all challenges apply to all companies/platforms
Best-in-Class Potential in Neoantigen Field

- Advaxis neoantigen programs leverage its proprietary vector’s capacity for large number of antigens
 - ADXS-NEO constructs currently utilize **40 private neoantigens per patient**
 - ADXS-HOT constructs utilize **> 30 public hotspots + other immunogenic antigens**

- Preliminary clinical data from ADXS-NEO clinical trials demonstrate broad and rapid anti-tumor immunity
 - Strong T cell **neoantigen responses 1 week after priming/initial dose**
 - **T cell responses in >90% of neoantigen pools** tested (individual peptide data pending)

- Antigen spreading documented in both single antigen Advaxis clinical constructs as well as in ADXS-NEO
 - Immunologic context promotes antigen spreading, extending effects beyond included targets
 - Magnitude of T cell response to primary targets correlated with antigen spreading and clinical outcomes

- Repeat dosing without neutralizing antibodies

ELISPOT data

ADXS-NEO

MSS-CRC patient

<table>
<thead>
<tr>
<th>Weeks</th>
<th>1-week post-prime</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pool 1</td>
</tr>
<tr>
<td>5</td>
<td>Pool 2</td>
</tr>
</tbody>
</table>

MSS CRC, microsatellite stable colon cancer
Anticipated Catalysts Over the Next 12 Months

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>ANTICIPATED MILESTONES</th>
<th>TARGET</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADXS-PSA</td>
<td>• Metastatic Prostate Ph1/2 Combination with pembrolizumab--Part B Monotherapy Combination Therapy Data (updated survival and preliminary biomarker data)</td>
<td>Q1 2019</td>
</tr>
<tr>
<td>ADXS-NEO</td>
<td>• Data from initial clinical cohort (safety, immune response)</td>
<td>1H 2019</td>
</tr>
<tr>
<td>ADXS-HOT NSCLC (ADXS-503)</td>
<td>• Data from initial clinical cohort (safety, immune response)</td>
<td>1H 2019</td>
</tr>
<tr>
<td>ADXS-HPV (axalimogene filolisbac)</td>
<td>• Announce planned Investigator Sponsored Trial in Head and Neck Cancer</td>
<td>1H 2019</td>
</tr>
<tr>
<td>ADXS-HOT Prostate</td>
<td>• IND Submission</td>
<td>1H 2019</td>
</tr>
<tr>
<td>ADXS-HOT Bladder</td>
<td>• IND Submission</td>
<td>2H 2019</td>
</tr>
</tbody>
</table>

NSCLC = Non-small cell lung cancer; IND = Investigational New Drug
Executive Management Team

Kenneth A. Berlin
Chief Executive Officer

Molly Henderson
Chief Financial Officer

Robert Petit
Chief Scientific Officer

Dr. Andres Gutierrez
Chief Medical Officer
Financial Information, as of October 31, 2018 (fiscal year end)

- Cash on hand - $45.1 million
 - Reduced annual net cash burn to ~$50 million, from ~$80 million

- No debt

- Shares outstanding: 69.6 million
 - Fully diluted shares outstanding: 89.2 million
Unique Platform Yielding Broad Portfolio of I-O Drug Candidates: Listeria monocytogenes (*Lm*) platform optimized so as to generate a broad portfolio of I-O drug candidates across a large number of solid tumor types.

Validation in the Clinic: Demonstrated manageable safety profile along with clinical activity – nearly 500 patients treated to date.

Neoantigen-Directed Drug Candidates with High Tumor Immunogenicity Potential: Innovative, personalized and off-the-shelf neoantigen-directed drug candidate with preliminary clinical data demonstrating potential for best-in-class CD8+ T cell response.

Strong Intellectual Property Portfolio: Over 400 patents/patent applications.

Experienced Management Team: Chief Executive Officer, Chief Financial Officer and Chief Medical Officer joined within past year.

Multiple Catalysts (Read-outs) Anticipated in 2019
References for Slide 6 above

